sources Nighttime photochemistry: nitrate radical destruction by anthropogenic light

CITATIONS 7 authors, including: Article · December 2010 National Oceanic and Atmospheric Administration Steven Brown 416 PUBLICATIONS 22,511 CITATIONS SEE PROFILE READS 2,009 National Oceanic and Atmospheric Administration 137 PUBLICATIONS 7,951 CITATIONS W. P. Dubé SEE PROFILE

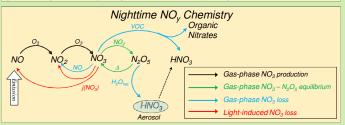
A21C-0117

Nighttime photochemistry: nitrate radical destruction by anthropogenic light sources

H. Stark* a), S.S. Brown, W.P. Dubé a), N. Wagner a), T.B. Ryerson, I.B. Pollack a), C.D. Elvidge, D. Ziskin, and D.D. Parrish

National Oceanic and Atmospheric Administration, Earth System Research Laboratory, 325 Broadway, Boulder, CO 80305, USA * harald.stark@noaa.gov, Phone: 303-497-5426

a) Also associated with Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, CO 80309, USA


Motivation

Nighttime chemistry is an important aspect of tropospheric chemistry. A key molecule for nighttime chemistry is the nitrate radical, NO3. It serves as a nighttime oxidant, comparable to the hydroxyl radical (OH) during the day. Also, through its equilibrium with NoOs via reaction with NOs, it can be a source of aerosol acidification. Further, under clean and dry conditions, NO_3 and N_2O_5 are nighttime reservoirs for NO_x and can influence ozone production during daytime.

Recent ground, ship, and airborne in-situ measurements of NO₃ have shown a large variety of lifetimes, indicating very different magnitudes of loss rates for NO3.

Nitrate radical is readily photolyzed by visible light, such that both NO3 and N2O5 are present at significant

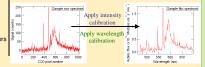
We will show airborne and ground measurements of absolute light intensities from anthropogenic and natural light sources (e.g. industrial and street lighting, full moon) as a newly discovered NO₃ loss process. This loss process has implications for nighttime pollutant levels and next-day ozone production.

Photolysis rates Actinic Flux $I(\lambda)$ Absorption spectrum $\sigma(\lambda)$ Quantum yields $\Phi(\lambda)$ Chemical reaction

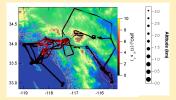
 $A + light \rightarrow A_1 + A_2$ \ (literature) $= [I(\lambda) \cdot \sigma_{\lambda}(\lambda) \cdot \Phi_{\lambda}(\lambda) d\lambda]$ Photolysis rate i

Measurement Technique for Spectral Actinic Flux:

"Actinic Flux SpectroRadiometer" (AFSR)


CCD-array grating spectrometer with 4π | Calibration procedures for intensity and wavelength: homogeneous response receptors:

- 460-690 nm 1024×256 CCD array
- Pixel resolution ≈ 0.25 nm
- FWHM ≈ 1 nm Data averaged to 1 nm
- High sensitivity from 80% duty cycle
- 4 sec integration time
- 0.2 Hz repetition rate
- Ontical fibers from recentors to spectrometers
- Optical receptors with angle-independent light response
- Hemispheric separation using shadow rings

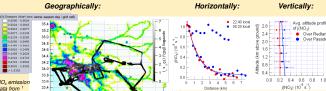

- Field standard 250-W halogen lamps were calibrated before and after the campaign in the laboratory using NIST-traceable radiation
- Intensity calibration performed regularly during field campaigns.
- Wavelength calibration:
- Hg. Cd. and Ne atomic emission lamps used in conjunction with sunlight.
- Atomic emission lines and solar Fraunhofer lines used for wavelength calibration at same time as intensity calibration

Platform: NOAA WP-3D Optical receptors mounted on top and

Locations 4 night time flights in the LA basin in May and June 2010:

Light Intensities from Sun, Street Lights, and Full Moon

- Street lights are more than 4 orders of magnitude
- Street lights are up to 25 times brighter than the full moon
- Spectral overlap between street lights and NO. spectrum and quantum yields
- NO_α Photolysis rates and lifetimes (τ): $1 \times 10^{-1} \text{ s}^{-1} \ (\tau \approx 10 \text{ sec})$
- Davtime: Anthropogenic lights:
- Airborne (800m): 1×10⁻⁵ s⁻¹ (τ≈ 28 hrs)
- · Ground: $5 \times 10^{-5} \text{ s}^{-1} \ (\tau \approx 6 \text{ hrs})$ Full moon: $4 \times 10^{-7} \text{ s}^{-1} \ (\tau \approx 25 \text{ days})$
- Anthropogenic lights can photolyze NO₃


Comparison with measured NO3 loss rates

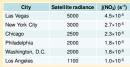
Steady-state loss rates calculated after Brown et al. 2

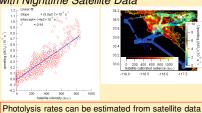
- $\tau_{SS}(NO_3) = \frac{[NO_3 + N_2O_5]}{k[O_3][NO_3]} \approx (k_{loss}(NO_3))^{-1}$
- Using in-situ measurements of NO₃, N₂O₅, O₃, and NO₂ Photolysis contributed up to 10% to instantaneous NO₃ loss
- during CalNex

Lights can contribute to overall NO. loss

Spatial distribution of lights Horizontally:

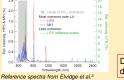
From Long Beach to ocean at 800 m a.s.l.: Exponential decay: 1/e $length = (1.3\pm0.2) km$


NO_x emissions and light are co-located Horizontal extent about 6km at 800 m above ground, exponentially decaying Vertically nearly constant up to 3 km


Light extends into NO₃ - relevant regions

Comparison with Nighttime Satellite Data

High spatial correlation with satellite data: R2 = 0.84, best agreement with 6 km


- averaging grid size (83° field of vision)
- j(NO₃) can be determined for other cities using existing satellite data

Spectral identification of lamp types

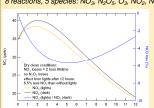
High Pressure Sodium Lamps (HPS) Aircraft data can be used Metal Halide Lamps (MH) · Low Pressure Sodium Lamps (LPS) for lamp identification

Different lamp types give different photolysis rates

Small or no light decrease

with altitude up to 3km for

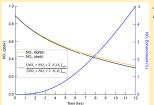
Tvpical1/r2 - dependence


of light balanced by

increasing field of view

· Higher percentage of HPS over industrial areas and airports

Implications for tropospheric chemistry


Chemical box model calculations: 8 reactions, 5 species: NO3, N2O5, O3, NO2, NO

Reduced NO₃ levels:

- Street lights can reduce NO₃ by up to 7% over Los Angeles
- Higher reduction levels possible over brighter areas (under clouds, over snow)
- N₂O₅ reductions of similar magnitude Slower nighttime oxidation:
- · Increased levels of primary pollutants
- · Decreased levels of secondary pollutants (e.g. HNO3, CINO2, organic nitrates)
- Lower HNO₃ production

Reduced NO_o can lead to increased primary and decreased secondary pollutants

Equilibrium shift towards NO2 in $NO_2 + O_3 \Leftrightarrow NO_3 + O_2$:

- Street lights can reduce nocturnal NO. loss
- Ozone production on following day can be increased
- 5% additional NO, available for daytime
- photochemistry for Los Angeles model · Higher NO, levels possible over brighter areas (under clouds, over snow)

Anthropogenic lights can lead to increased ozone production after sunrise

Additional nighttime photolysis processes Overtone photolysis of HNO3 and H2O2 to produce nighttime OH

Donaldson et al. 4 proposed process OH production through absorption of visible and infrared light into vibrational overtones of OH-stretch transition followed by intramolecular vibrational energy redistribution (IVR) X-OH + $hv \rightarrow X$ - $(OH)^* \rightarrow (X$ -OH)* $\rightarrow X$ + OH

Possibly important at low UV light levels where other OH production channels are slow

- Overtone transitions measured with cavity ringdown spectroscopy for HNO₃, H₂O₂, and others
- Using integrated absorption cross sections from Brown et al.5 and average actinic fluxes at absorption feature wavelengths, overtone photolysis rates for OH production are 0.3×10⁻¹²s⁻¹ and 1×10⁻¹²s⁻¹ for HNO₃ and H₂O₂, respectively
- Assuming 3 ppb of HNO_3 and H_2O_2 each, overtone photolysis of these compounds together would produce on the order of a few hundred molecules of OH per hour, a negligible amount

Anthropogenic lights can not produce significant amounts of OH

Conclusions

- First measurement of nighttime photolysis rates for NO₃ from anthropogenic and natural light
- Photolysis rates contributed up to 10% to instantaneous NO2 losses during CalNex
- Anthropogenic lights can reduce nighttime NO₃ levels in the range of up to 7% based on data from CalNex
- Airborne validation of nighttime satellite radiance measurements
- Higher intensities possible in brighter cities, over snow, and/or under clouds
- Characterized horizontal and vertical distribution of light intensities over Los Angeles
- Identified 2 major components of nighttime light: high pressure sodium and metal halide lamps
- Different lamp types give different photolysis rates
- Nighttime oxidation can be slower due to lights
- Primary pollutants may be increased while secondary pollutants could be decreased
- · Nocturnal OH production from overtone photolysis is insignificant
- Ozone production during daytime could be increased by nighttime light sources

References

- EPA National Emission Inventory 1999: http://map.ngdc.noaa.gov/website/al/em
- Brown, S.S., et al.: "Vertical profiles in NO₃ and N₂O₅ measured from an aircraft: Results from the NOAA P-3 and surface platforms during the New England Air Quality Study 2004", J. Geophys. Res. A. 2007, 112, D22304
 Elvidge, C.D., D.M. Keith, B.T. Tuttle, and K.E. Baugh: "Spectral Identification of Lighting Type and Character", Sensors
- Donaldson, D.J., G.J. Frost, K.H. Rosenlof, A.F. Tuck, V. Vaida: "Atmospheric radical production by excitation of vibrational overtones via absorption of visible light", Geophys. Res. Lett. 1997, 24, 2651
- Brown, S.S., R.W. Wilson, and A.R. Ravishankara: "Absolute Intensities for Third and Fourth Overtone Absorptions in HNO₃ and H₂O₂", J. Phys. Chem. A, 104, 4976 (2000)

Displaces. This presentation was proposed by the Cooperative Institute for Research to Disviounced Sources (CRRS), all inapport in past from the National Councils and Annual photo, Administration, U.S. Dispatiment of Commons, and Mallia (Council and Annual Prince) and Annual Prince (Council and An